Comparative Hazard Identification by a Single Dose Lung Exposure of Zinc Oxide and Silver Nanomaterials in Mice

نویسندگان

  • Ilse Gosens
  • Ali Kermanizadeh
  • Nicklas Raun Jacobsen
  • Anke-Gabriele Lenz
  • Bas Bokkers
  • Wim H. de Jong
  • Petra Krystek
  • Lang Tran
  • Vicki Stone
  • Håkan Wallin
  • Tobias Stoeger
  • Flemming R. Cassee
چکیده

Comparative hazard identification of nanomaterials (NMs) can aid in the prioritisation for further toxicity testing. Here, we assessed the acute lung, systemic and liver responses in C57BL/6N mice for three NMs to provide a hazard ranking. A silver (Ag), non-functionalised zinc oxide (ZnO) and a triethoxycaprylylsilane functionalised ZnO NM suspended in water with 2% mouse serum were examined 24 hours following a single intratracheal instillation (I.T.). An acute pulmonary inflammation was noted (marked by a polymorphonuclear neutrophil influx) with cell damage (LDH and total protein) in broncho-alveolar lavage fluid (BALF) after administration of both non-functionalised and functionalised ZnO. The latter also induced systemic inflammation measured as an increase in blood neutrophils and a decrease in blood lymphocytes. Exposure to Ag NM was not accompanied by pulmonary inflammation or cytotoxicity, or by systemic inflammation. A decrease in glutathione levels was demonstrated in the liver following exposure to high doses of all three nanomaterials irrespective of any noticeable inflammatory or cytotoxic effects in the lung. By applying benchmark dose (BMD) modeling statistics to compare potencies of the NMs, we rank functionalised ZnO ranked the highest based on the largest number of affected endpoints, as well as the strongest responses observed after 24 hours. The non-functionalised ZnO NM gave an almost similar response, whereas Ag NM did not cause an acute response at similar doses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Nano Zinc Oxide on the Hind Limb Bud of NMRI mouse embryos

Nanomaterials are particles with 10 to100 nanometer size. They can easily be transportedthrough the skin, lung alveoli, and placenta. Materials in nano scales show different propertiescompared with the same materials in macro or larger scale. It is found that zinc element is anessential metal for normal physiological functions. However increase or decrease of this elementduring pregnancy, for e...

متن کامل

Histological Evaluation of the Fetus Lung in NMRI Mice after Exposure to Iron Oxide Nanoparticles: an in vitro Study

Background and Aim: Iron oxide nanoparticles are used in fields related to nanotechnology including ecology, magnetic storage, imaging and medicinal purposes. Iron nanoparticles produce reactive oxygen species (Ros). These materials are able to cross the placenta. The aim of this study was to investigate toxic effect of iron oxide nanoparticles on fetal lung in mice. <br ...

متن کامل

A Review of Toxicity of Some Conventional Nanomaterials

Increased production and use of nanomaterials has led to an ever growing exposure of living organisms tothese substances. Limited knowledge about possible toxicity of nanomaterials and their potential to harmliving creatures is becoming a serious concern. To address this problem, there is a need for development ofdiagnostic methods enabling effective determination of potential toxicity of nanom...

متن کامل

A Review of Toxicity of Some Conventional Nanomaterials

Increased production and use of nanomaterials has led to an ever growing exposure of livingorganisms to these substances. Limited knowledge about possible toxicity of nanomaterialsand their potential to harm living creatures is becoming a serious concern. To address thisproblem, there is a need for development of diagnostic methods enabling effective determinationof potential toxicity of nanoma...

متن کامل

Antimicrobial Effects of Zinc Oxide and Silver Nitrate Nanoparticles on S. aureus, A. baumannii and P. aeruginosa

Background and Objective: Nanoparticles have been introduced as novel antimicrobial agents because of their properties that are different from their bulk properties. Present study was aimed to investigate antimicrobial activity of silver nitrate and zinc oxide nanoparticles against three main bacteria responsible for nosocomial infections, S. aureus, P. aeruginosa and A. baumannii. Materials a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015